IIT-JAM

Mathematics (MA)
 2021

SECTION - A

MULTIPLE CHOICE QUESTIONS (MCQ)

Q. 1 - Q. 10 carry one mark each.
(1.) Let $0<\alpha<1$ be a real number. The number of differentiable functions $y:[0,1] \rightarrow[0, \infty)$, having continuous derivative on $[0,1]$ and satisfying
$y^{\prime}(t)=(y(t))^{\alpha}, t \in[0,1]$,
$y(0)=0$, is
(a.) Exactly one
(b.) Exactly two
(c.) Finite but more than two
(d.) Infinite
(2.) Let $P: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $P(x)>0$ for all $x \in \mathbb{R}$. Let y be a twice differentiable function on \mathbb{R} satisfying $y^{\prime \prime}(x)+P(x) y^{\prime}(x)-y(x)=0$ for all $x \in \mathbb{R}$. Suppose that there exist two real numbers $a, b(a<b)$ such that $y(a)=y(b)=0$. Then
(a.) $y(x)=0$ for all $x \in[a, b]$
(b.) $y(x)>0$ for all $x \in(a, b)$
(c.) $y(x)<0$ for all $x \in(a, b)$
(d.) $y(x)$ changes sign on (a, b)
(3.) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function satisfying $f(x)=f(x+1)$ for all $x \in \mathbb{R}$. Then
(a.) f is not necessarily bounded above
(b.) There exists a unique $x_{0} \in \mathbb{R}$ such that $f\left(x_{0}+\pi\right)=f\left(x_{0}\right)$
(c.) There is no $x_{0} \in \mathbb{R}$ such that $f\left(x_{0}+\pi\right)=f\left(x_{0}\right)$
(d.) There exist infinitely many $x_{0} \in \mathbb{R}$ such that $f\left(x_{0}+\pi\right)=f\left(x_{0}\right)$
(4.) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that for all $x \in \mathbb{R}$,
$\int_{0}^{1} f(x t) d t=0$
Then
(a.) $\quad f$ must be identically 0 on the whole of \mathbb{R}
(b.) There is an f satisfying ($*$) that is identically 0 on $(0,1)$ but not identically 0 on the whole of \mathbb{R}
(c.) There is an f satisfying ($*$) that takes both positive and negative values
(d.) There is an f satisfying (*) that is 0 at infinitely many points, but is not identically zero
(5.) Let p and t be positive real numbers. Let D_{t} be the closed disc of radius t centered at (0,0), i.e., $D_{t}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq t^{2}\right\}$. Define $I(p, t)=\iint_{D_{t}} \frac{d x d y}{\left(p^{2}+x^{2}+y^{2}\right)^{p}}$.

Then $\lim _{t \rightarrow \infty} I(p, t)$ is finite
(a.) Only if $p>1$
(b.) Only if $p=1$
(c.) Only if $p<1$
(d.) For no value of p
(6.) How many elements of the group \mathbb{Z}_{50} have order 10 ?
(a.) 10
(b.) 4
(c.) 5
(d.) 8
(7.) For every $n \in \mathbb{N}$, let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be a function. From the given choices, pick the statement that is the negation of "For every $x \in \mathbb{R}$ and for every real number $\varepsilon>0$, there exists an integer $N>0$ such that $\sum_{i=1}^{p}\left|f_{N+i}(x)\right|<\varepsilon$ for every integer $p>0$."
(a.) For every $x \in \mathbb{R}$ and for every real number $\varepsilon>0$, there does not exists any integer $N>0$ such that $\sum_{i=1}^{p}\left|f_{N+i}(x)\right|<\varepsilon$ for every integer $p>0$.
(b.) For every $x \in \mathbb{R}$ and for every real number $\varepsilon>0$, there exists an integer $N>0$ such that $\sum_{i=1}^{p}\left|f_{N+i}(x)\right| \geq \varepsilon$ for some integer $p>0$.
(c.) There exists $x \in \mathbb{R}$ and there exists a real number $\varepsilon>0$ such that for every integer $N>0$, there exists an integer $p>0$ for which the inequality $\sum_{i=1}^{p}\left|f_{N+i}(x)\right| \geq \varepsilon$ holds
(d.) There exists $x \in \mathbb{R}$ and there exists a real number $\varepsilon>0$ such that for every integer $N>0$ and for every integer $p>0$ the inequality $\sum_{i=1}^{p}\left|f_{N+i}(x)\right| \geq \varepsilon$ holds
(8.) Which one of the following subsets of \mathbb{R} has a non-empty interior?
(a.) The set of all irrational number in \mathbb{R}
(b.) The set $\{a \in \mathbb{R}: \sin (a)=1\}$
(c.) The set $\left\{b \in \mathbb{R}: x^{2}+b x+1=0\right.$ has distinct roots $\}$
(d.) The set of all rational numbers in \mathbb{R}
(9.) For an integer $k \geq 0$, let P_{k} denote the vector space of all real polynomials in one variable of degree less than or equal to k. Define a linear transformation $T: P_{2} \rightarrow P_{3}$ by $T f(x)=f^{\prime \prime}(x)+x f(x)$.

Which one of the following polynomials is not in the range of T ?
(a.) $x+x^{2}$
(b.) $x^{2}+x^{3}+2$
(c.) $x+x^{3}+2$
(d.) $x+1$
(10.) Let $n>1$ be an integer. Consider the following two statements for an arbitrary $n \times n$ matrix A with complex entries.
I. If $A^{k}=I_{n}$ for some integer $k \geq 1$, then all the eigenvalues of A are $k^{\text {th }}$ roots of unity.
II. If, for some integer $k \geq 1$, all the eigenvalues of A are $k^{\text {th }}$ roots of unity, then $A^{k}=I_{n}$.

Then
(a.) Both I and II are TRUE
(b.) I is TRUE but II is FALSE
(c.) I is FALSE but II is TRUE
(d.) Neither I nor II is TRUE

Q. 11 - Q. 30 carry two marks each.

(11.) Let $M_{n}(\mathbb{R})$ be the real vector space of all $n \times n$ matrices with real entries, $n \geq 2$. Let $A \in M_{n}(\mathbb{R})$. Consider the subspace W of $M_{n}(\mathbb{R})$ spanned by $\left\{I_{n}, A, A^{2}, \ldots\right\}$. Then the dimension of W over \mathbb{R} is necessarily
(a.) ∞
(b.) n^{2}
(c.) n
(d.) At most n
(12.) Let y be the solution of

$$
(1+x) y^{\prime \prime}(x)+y^{\prime}(x)-\frac{1}{1+x} y(x)=0, \quad x \in(-1, \infty), y(0)=1, y^{\prime}(0)=0 .
$$

Then
(a.) y is bounded on $(0, \infty)$
(b.) y is bounded on $(-1,0]$
(c.) $y(x) \geq 2$ on $(-1, \infty)$
(d.) y attains its minimum at $x=0$
(13.) Consider the surface
$S=\left\{(x, y, x y) \in \mathbb{R}^{3}: x^{2}+y^{2} \leq 1\right\}$.
Let $\vec{F}=y \hat{i}+x \hat{j}+\hat{k}$.
If \hat{n} is the continuous unit normal field to the surface S with positive z-component, then $\iint_{S} \vec{F} \cdot \hat{n} d S$ equals
(a.) $\frac{\pi}{4}$
(b.) $\frac{\pi}{2}$
(c.) π
(d.) 2π
(14.) Consider the following statements.
I. The $\operatorname{group}(\mathbb{Q},+)$ has no proper subgroup of finite index.
II. The group $(\mathbb{C} \backslash\{0\}, \cdot)$ has no proper subgroup of finite index.

Which one of the following statements is true?
(a.) Both I and II are TRUE
(b.) I is TRUE but II is FALSE
(c.) II is TRUE but I is FALSE
(d.) Neither I nor II is TRUE
(15.) Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a bijective map such that $\sum_{n=1}^{\infty} \frac{f(n)}{n^{2}}<+\infty$. The number of such bijective map is
(a.) Exactly one
(b.) Zero
(c.) Finite but more than one
(d.) Infinite
(16.) Define $S=\lim _{n \rightarrow \infty}\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right) \ldots\left(1-\frac{1}{n^{2}}\right)$.

Then
(a.) $S=\frac{1}{2}$
(b.) $S=\frac{1}{4}$
(c.) $S=1$
(d.) $S=\frac{3}{4}$
(17.) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an infinitely differentiable function such that for all $a, b \in \mathbb{R}$ with $a<b$, $\frac{f(b)-f(a)}{b-a}=f^{\prime}\left(\frac{a+b}{2}\right)$.

Then
(a.) f must be a polynomial of degree less than or equal to 2
(b.) f must be a polynomial of degree greater than 2
(c.) f is not a polynomial
(d.) f must be a linear polynomial
(18.) Consider the function
$f(x)=\left\{\begin{array}{cl}1 & \text { if } x \in(\mathbb{R} \backslash \mathbb{Q}) \cup\{0\}, \\ 1-\frac{1}{p} & \text { if } x=\frac{n}{p}, n \in \mathbb{Z} \backslash\{0\}, \\ \text { Then } & p \in \mathbb{N} \text { and } \operatorname{gcd}(n, p)=1\end{array}\right.$
(a.) All $x \in \mathbb{Q} \backslash\{0\}$ are strict local minima for f
(b.) f is continuous at all $x \in \mathbb{Q}$
(c.) f is not continuous at all $x \in \mathbb{R} \backslash \mathbb{Q}$
(d.) f is not continuous at $x=0$
(19.) Consider the family of curves $x^{2}-y^{2}=k y$ with parameter $k \in \mathbb{R}$. The equation of the orthogonal trajectory to this family passing through $(1,1)$ is given by
(a.) $x^{3}+3 x y^{2}=4$
(b.) $x^{2}+2 x y=3$
(c.) $y^{2}+2 x^{2} y=3$
(d.) $x^{3}+2 x y^{2}=3$
(20.) Which one of the following statements is true?
(a.) Exactly half of the elements in any even order subgroup of S_{5} must be even permutations
(b.) Any abelian subgroup of S_{5} is trivial
(c.) There exists a cyclic subgroup of S_{5} of order 6
(d.) There exists a normal subgroup of S_{5} of index 7
(21.) Let $f:[0,1] \rightarrow[0, \infty)$ be a continuous function such that $(f(t))^{2}<1+2 \int_{0}^{t} f(s) d s$, for all $t \in[0,1]$. Then
(a.) $f(t)<1+t$ for all $t \in[0,1]$
(b.) $f(t)>1+t$ for all $t \in[0,1]$
(c.) $f(t)=1+t$ for all $t \in[0,1]$
(d.) $f(t)<1+\frac{t}{2}$ for all $t \in[0,1]$
(22.) Let A be an $n \times n$ invertible matrix and C be an $n \times n$ nilpotent matrix. If $X=\left(\begin{array}{ll}X_{11} & X_{12} \\ X_{21} & X_{22}\end{array}\right)$ is a $2 n \times 2 n$ matrix (each $X_{i j}$ being $n \times n$) that commutes with the $2 n \times 2 n$ matrix $B=\left(\begin{array}{ll}A & 0 \\ 0 & C\end{array}\right)$, then
(a.) X_{11} and X_{22} are necessarily zero matrices
(b.) X_{12} and X_{21} are necessarily zero matrices
(c.) X_{11} and X_{21} are necessarily zero matrices
(d.) X_{12} and X_{22} are necessarily zero matrices
(23.) Let $D \subseteq \mathbb{R}^{2}$ be defined by $D=\mathbb{R}^{2} \backslash\{(x, 0): x \in \mathbb{R}\}$.

Consider the function $f: D \rightarrow \mathbb{R}$ defined by $f(x, y)=x \sin \frac{1}{y}$.
Then
(a.) f is a discontinuous function on D
(b.) f is a continuous function on D and cannot be extended continuously to any point outside D
(c.) f is a continuous function on D and can be extended continuously to $D \cup\{(0,0)\}$
(d.) f is a continuous function on D and can be extended continuously to the whole of \mathbb{R}^{2}
(24.) Which one of the following statements is true?
(a.) $(\mathbb{Z},+)$ is isomorphic to $(\mathbb{R},+)$
(b.) $(\mathbb{Z},+)$ is isomorphic to $(\mathbb{Q},+)$
(c.) $\quad(\mathbb{Q} / \mathbb{Z},+)$ is isomorphic to $(\mathbb{Q} / 2 \mathbb{Z},+)$
(d.) $(\mathbb{Q} / \mathbb{Z},+)$ is isomorphic to $(\mathbb{Q},+)$
(25.) Let y be a twice differentiable function on \mathbb{R} satisfying
$y^{\prime \prime}(x)=2+e^{-|x|}, x \in \mathbb{R}$,
$y(0)=-1, y^{\prime}(0)=0$.
Then,
(a.) $y=0$ has exactly one root
(b.) $y=0$ has exactly two roots
(c.) $y=0$ has more than two roots
(d.) There exists an $x_{0} \in \mathbb{R}$ such that $y\left(x_{0}\right) \geq y(x)$ for all $x \in \mathbb{R}$
(26.) Let $f:[0,1] \rightarrow[0,1]$ be a non-constant continuous function such that $f \circ f=f$. Define $E_{f}=\{x \in[0,1]: f(x)=x\}$. Then
(a.) E_{f} is neither open nor closed
(b.) E_{f} is an interval
(c.) E_{f} is empty
(d.) E_{f} need not be an interval
(27.) Let g be an element of S_{7} such that g commutes with the element $(2,6,4,3)$. The number of such g is
(a.) 6
(b.) 4
(c.) 24
(d.) 48
(28.) Let G be a finite abelian group of odd order.

Consider the following two statements:
I. The map $f: G \rightarrow G$ defined by $f(g)=g^{2}$ is a group isomorphism.
II. The product $\prod_{g \in G} g=e$
(a.) Both I and II are TRUE
(b.) I is TRUE but II is FALSE
(c.) II is TRUE but I is FALSE
(d.) Neither I nor II is TRUE
(29.) Let $n \geq 2$ be an integer. Let $A: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be the linear transformation defined by $A\left(z_{1}, z_{2}, \ldots, z_{n}\right)=\left(z_{n}, z_{1}, z_{2}, \ldots, z_{n-1}\right)$.

Which one of the following statements is true for every $n \geq 2$?
(a.) A is nilpotent
(b.) All eigenvalues of A are of modulus 1
(c.) Every eigenvalue of A is either 0 or 1
(d.) A is singular
(30.) Consider the two series
I. $\quad \sum_{n=1}^{\infty} \frac{1}{n^{1+(1 / n)}}$ and
II. $\sum_{n=1}^{\infty} \frac{1}{n^{2-n^{1 / n}}}$

Which one of the following holds?
(a.) Both I and II converges
(b.) Both I and II diverge
(c.) I converges and II diverges
(d.) I diverges and II converges

SECTION - B
 MULTIPLE SELECT QUESTIONS (MSQ)

$\square F \square F Q .31-Q .40$ carry two marks each.
(31.) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function with the property that for every $y \in \mathbb{R}$, the value of the expression $\sup _{x \in \mathbb{R}}[x y-f(x)]$ is finite. Define $g(y)=\sup _{x \in \mathbb{R}}[x y-f(x)]$ for $y \in \mathbb{R}$. Then
(a.) g is even if f is even
(b.) f must satisfy $\lim _{|x| \rightarrow \infty} \frac{f(x)}{|x|}=+\infty$
(c.) g is odd if f even
(d.) f must satisfy $\lim _{|x| \rightarrow \infty} \frac{f(x)}{|x|}=-\infty$
(32.) Consider the equation
$x^{2021}+x^{2020}+\ldots+x-1=0$.

Then
(a.) All real roots is positive
(b.) Exactly one real root is positive
(c.) Exactly one real root is negative
(d.) No real root is positive
(33.) Let $D=\mathbb{R}^{2} \backslash\{(0,0)\}$. Consider the two function $u, v: D \rightarrow \mathbb{R}$ defined by $u(x, y)=x^{2}-y^{2}$ and $v(x, y)=x y$. Consider the gradients ∇u and ∇v of the functions u and v, respectively. Then
(a.) $\quad \nabla u$ and ∇v are parallel at each point (x, y) of D
(b.) ∇u and ∇v are perpendicular at each point (x, y) of D
(c.) ∇u and ∇v do not exist at some points (x, y) of D
(d.) ∇u and ∇v at each point (x, y) of D span \mathbb{R}^{2}
(34.) Consider the two functions $f(x, y)=x+y$ and $g(x, y)=x y-16$ defined on \mathbb{R}^{2}. Then
(a.) The function f has no global extreme value subject to the condition $g=0$
(b.) The function f attains global extreme values at $(4,4)$ and $(-4,-4)$ subject to the condition $g=0$
(c.) The function g has no global extreme value subject to the condition $f=0$
(d.) The function g has a global extreme value at $(0,0)$ subject to the condition $f=0$
(35.) Let $f:(a, b) \rightarrow \mathbb{R}$ be a differentiable function on (a, b). Which of the following statements is/are true?
(a.) $f^{\prime}>0$ in (a, b) implies that f is increasing in (a, b)
(b.) f is increasing in (a, b) implies that $f^{\prime}>0$ in (a, b)
(c.) If $f^{\prime}\left(x_{0}\right)>0$ for some $x_{0} \in(a, b)$, then there exists a $\delta>0$ such that $f(x)>f\left(x_{0}\right)$ for all $x \in\left(x_{0}, x_{0}+\delta\right)$
(d.) If $f^{\prime}\left(x_{0}\right)>0$ for some $x_{0} \in(a, b)$, then f is increasing in a neighborhood of x_{0}
(36.) Let G be a finite group of order 28. Assume that G contains a subgroup of order 7 .

Which of the following statements is/are true?
(a.) G contains a unique subgroup of order 7
(b.) G contains a normal subgroup of order 7
(c.) G contains no normal subgroup of order 7
(d.) G contains at least two subgroups of order 7
(37.) Which of the following subsets of \mathbb{R} is/are connected?
(a.) The set $\{x \in \mathbb{R}: x$ is irrational $\}$
(b.) The set $\left\{x \in \mathbb{R}: x^{3}-1 \geq 0\right\}$
(c.) The set $\left\{x \in \mathbb{R}: x^{3}+x+1 \geq 0\right\}$
(d.) The set $\left\{x \in \mathbb{R}: x^{3}-2 x+1 \geq 0\right\}$
(38.) Consider the four functions from \mathbb{R} to \mathbb{R}
$f_{1}(x)=x^{4}+3 x^{3}+7 x+1$,
$f_{2}(x)=x^{3}+3 x^{2}+4 x$,
$f_{3}(x)=\arctan (x)$ and
$f_{4}(x)= \begin{cases}x & \text { if } x \notin \mathbb{Z} \\ 0 & \text { if } x \in \mathbb{Z}\end{cases}$
Which of the following subsets of \mathbb{R} are open?
(a.) The range of f_{1}
(b.) The range of f_{2}
(c.) The range of f_{3}
(d.) The range of f_{4}
(39.) Let V be a finite dimensional vector space and $T: V \rightarrow V$ be a linear transformation. Let $\mathcal{R}(T)$ denote the range of T and $\mathcal{N}(T)$ denote the null space $\{v \in V: T v=0\}$ of T. If $\operatorname{rank}(T)=\operatorname{rank}\left(T^{2}\right)$, then which of the following is/are necessarily true?
(a.) $\quad \mathcal{N}(T)=\mathcal{N}\left(T^{2}\right)$
(b.) $\mathcal{R}(T)=\mathcal{R}\left(T^{2}\right)$
(c.) $\mathcal{N}(T) \cap \mathcal{R}(T)=\{0\}$
(d.) $\mathcal{N}(T)=\{0\}$
(40.) Let $m>1$ and $n>1$ be integers. Let A be an $m \times n$ matrix such that for some $m \times 1$ matrix b_{1}, the equation $A x=b_{1}$ has infinitely many solutions. Let b_{2} denote an $m \times 1$ matrix different from b_{1}. Then $A x=b_{2}$ has
(a.) Infinitely many solutions for some b_{2}
(b.) A unique solution for some b_{2}
(c.) No solution for some b_{2}
(d.) Finitely many solutions for some b_{2}

SECTION - C
 NUMERICAL ANSWER TYPE (NAT)
 Q. 41 - Q. 50 carry one mark each.

(41.) The number of cycles of length 4 in S_{6} is \qquad -
(42.) The value of $\lim _{n \rightarrow \infty}\left(3^{n}+5^{n}+7^{n}\right)^{\frac{1}{n}}$ is \qquad
(43.) Le

$$
B=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2} \leq 1\right\} \text { and }
$$ define $u(x, y, z)=\sin \left(\left(1-x^{2}-y^{2}-z^{2}\right)^{2}\right)$ for $(x, y, z) \in B$. Then the value of $\iiint_{B}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right) d x d y d z$ is \qquad .

(44.) Consider the subset
$S=\left\{(x, y): x^{2}+y^{2}>0\right\}$ of \mathbb{R}^{2}.
Let $P(x, y)=\frac{y}{x^{2}+y^{2}}$ and
$Q(x, y)=-\frac{x}{x^{2}+y^{2}}$ for $(x, y) \in S$.
If C denotes the unit circle traversed in the counter-clockwise direction, then the value of $\frac{1}{\pi} \int_{C}(P d x+Q d y)$ is \qquad .
(45.) Consider the set $A=\left\{a \in \mathbb{R}: x^{2}=a(a+1)(a+2)\right.$ has a real root $\}$. The number of connected components of A is \qquad
(46.) Let V be the real vector space of all continuous functions $f:[0,2] \rightarrow \mathbb{R}$ such that the restriction of f to the interval $[0,1]$ is a polynomial of degree less than or equal to 2 , the restriction of f to the interval $[1,2]$ is a polynomial of degree less than or equal to 3 and $f(0)=0$. Then the dimensions of V is equal to \qquad
(47.) The number of group homomorphisms from the group \mathbb{Z}_{4} to the group S_{3} is \qquad .
(48.) Let $y:\left(\frac{9}{10}, 3\right) \rightarrow \mathbb{R}$ be a differentiable function satisfying $(x-2 y) \frac{d y}{d x}+(2 x+y)=0, x \in\left(\frac{9}{10}, 3\right)$, and $y(1)=1$. Then $y(2)$ equal \qquad .
(49.) Let $\vec{F}=(y+1) e^{y} \cos (x) \hat{i}+(y+2) e^{y} \sin (x) \hat{j}$ be a vector field in \mathbb{R}^{2} and C be a continuously differentiable path with the starting point $(0,1)$ and the end point $\left(\frac{\pi}{2}, 0\right)$. Then $\int_{C} \vec{F} \cdot d \vec{r}$ equals
\qquad .
(50.) The value of $\frac{\pi}{2} \lim _{n \rightarrow \infty} \cos \left(\frac{\pi}{4}\right) \cos \left(\frac{\pi}{8}\right) \ldots \cos \left(\frac{\pi}{2^{n+1}}\right)$ is \qquad -.

Q. 51 - Q. 60 carry two marks each.

(51.) The number of elements of order two in the group S_{4} is equal to \qquad .
(52.) The least possible value of k, accurate up to two decimal places, for which the following problem
$y^{\prime \prime}(t)+2 y^{\prime}(t)+k y(t)=0, t \in \mathbb{R}$,
$y(0)=0, y(1)=0, y\left(\frac{1}{2}\right)=1$,
has a solution is \qquad .
(53.) Consider those continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ that have the property that given any $x \in \mathbb{R}$, $f(x) \in \mathbb{Q}$ if and only if $f(x+1) \in \mathbb{R} \backslash \mathbb{Q}$. The number of such functions is \qquad -
(54.) The largest positive number a such that $\int_{0}^{5} f(x) d x+\int_{0}^{3} f^{-1}(x) d x \geq a$ for every strictly increasing surjective continuous function $f:[0, \infty) \rightarrow[0, \infty)$ is \qquad -

(55.) Define the sequence $s_{n}=\left\{\begin{array}{ll}\frac{1}{2^{n}} \sum_{j=0}^{n-2} 2^{2 j} & \text { if } n>0 \text { is even } \\ \frac{1}{2^{n}} \sum_{j=0}^{n-1} 2^{2 j} & \text { if } n>0 \text { is odd }\end{array}\right.$.

Define $\sigma_{m}=\frac{1}{m} \sum_{n=1}^{m} s_{n}$. The number of limit points of the sequence $\left\{\sigma_{m}\right\}$ is \qquad .
(56.) The determinant of the matrix $\left(\begin{array}{llll}2021 & 2020 & 2020 & 2020 \\ 2021 & 2021 & 2020 & 2020 \\ 2021 & 2021 & 2021 & 2020 \\ 2021 & 2021 & 2021 & 2021\end{array}\right)$ is
(57.) The value of $\lim _{n \rightarrow \infty} \int_{0}^{1} e^{x^{2}} \sin (n x) d x$ is \qquad .
(58.) Let S be the surface defined by $\left\{(x, y, z) \in \mathbb{R}^{3}: z=1-x^{2}-y^{2}, z \geq 0\right\}$.

Let $\vec{F}=-y \hat{i}+(x-1) \hat{j}+z^{2} \hat{k}$ and \hat{n} be the continuous unit normal field to surface S with positive z-component. Then the value of $\frac{1}{\pi} \iint_{S}(\nabla \times \vec{F}) \cdot \hat{n} d S$ is \qquad -.
(59.) Let $A=\left(\begin{array}{ccc}2 & -1 & 3 \\ 2 & -1 & 3 \\ 3 & 2 & -1\end{array}\right)$.

Then the largest eigenvalue of A is \qquad .
(60.) Let $A=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$. Consider the linear map T_{A} from the real vector space $M_{4}(\mathbb{R})$ to itself defined by $T_{A}(X)=A X-X A$, for all $X \in M_{4}(\mathbb{R})$. The dimension of the range of T_{A} is \qquad -

