

IIT-JAM

Mathematics (MA) 2021

SECTION - A

MULTIPLE CHOICE QUESTIONS (MCQ)

Q. 1 - Q. 10 carry one mark each.

(1.) Let $0 < \alpha < 1$ be a real number. The number of differentiable functions $y:[0,1] \to [0,\infty)$, having continuous derivative on [0,1] and satisfying

$$y'(t) = (y(t))^{\alpha}, t \in [0,1],$$

$$y(0) = 0$$
, is

- (a.) Exactly one
- (b.) Exactly two
- (c.) Finite but more than two
- (d.) Infinite
- **(2.)** Let $P: \mathbb{R} \to \mathbb{R}$ be a continuous function such that P(x) > 0 for all $x \in \mathbb{R}$. Let y be a twice differentiable function on \mathbb{R} satisfying y''(x) + P(x)y'(x) y(x) = 0 for all $x \in \mathbb{R}$. Suppose that there exist two real numbers a, b (a < b) such that y(a) = y(b) = 0. Then
 - (a.) y(x) = 0 for all $x \in [a, b]$
 - (b.) y(x) > 0 for all $x \in (a,b)$
 - (c.) y(x) < 0 for all $x \in (a, b)$
 - (d.) y(x) changes sign on (a,b)
- (3.) Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying f(x) = f(x+1) for all $x \in \mathbb{R}$. Then
 - (a.) *f* is not necessarily bounded above
 - (b.) There exists a unique $x_0 \in \mathbb{R}$ such that $f(x_0 + \pi) = f(x_0)$
 - (c.) There is no $x_0 \in \mathbb{R}$ such that $f(x_0 + \pi) = f(x_0)$
 - (d.) There exist infinitely many $x_0 \in \mathbb{R}$ such that $f(x_0 + \pi) = f(x_0)$

(4.) Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function such that for all $x \in \mathbb{R}$,

$$\int_{0}^{1} f(xt) dt = 0 \tag{*}$$

Then

- (a.) f must be identically 0 on the whole of \mathbb{R}
- (b.) There is an f satisfying (*) that is identically 0 on (0,1) but not identically 0 on the whole of \mathbb{R}
- (c.) There is an f satisfying (*) that takes both positive and negative values
- (d.) There is an f satisfying (*) that is 0 at infinitely many points, but is not identically zero
- (5.) Let p and t be positive real numbers. Let D_t be the closed disc of radius t centered at (0,0), i.e.,

$$D_{t} = \{(x,y) \in \mathbb{R}^{2} : x^{2} + y^{2} \leq t^{2}\}$$
. Define $I(p,t) = \iint_{D_{t}} \frac{dxdy}{(p^{2} + x^{2} + y^{2})^{p}}$.

Then $\lim_{t\to\infty} I(p,t)$ is finite

- (a.) Only if p > 1
- (b.) Only if p = 1
- (c.) Only if p < 1
- (d.) For no value of p

- (a.) 10
- (b.) 4
- (c.) 5
- (d.) 8 E E E N E R A T I N E L D E I E S
- For every $n \in \mathbb{N}$, let $f_n : \mathbb{R} \to \mathbb{R}$ be a function. From the given choices, pick the statement that is the negation of "For every $x \in \mathbb{R}$ and for every real number $\varepsilon > 0$, there exists an integer N > 0 such that $\sum_{i=1}^{p} |f_{N+i}(x)| < \varepsilon$ for every integer p > 0."
 - (a.) For every $x \in \mathbb{R}$ and for every real number $\varepsilon > 0$, there does not exists any integer N > 0 such that $\sum_{i=1}^{p} \left| f_{N+i}(x) \right| < \varepsilon$ for every integer p > 0.
 - (b.) For every $x \in \mathbb{R}$ and for every real number $\varepsilon > 0$, there exists an integer N > 0 such that $\sum_{i=1}^{p} \left| f_{N+i}(x) \right| \ge \varepsilon$ for some integer p > 0.
 - (c.) There exists $x \in \mathbb{R}$ and there exists a real number $\varepsilon > 0$ such that for every integer N > 0, there exists an integer p > 0 for which the inequality $\sum_{i=1}^p \left| f_{N+i}(x) \right| \ge \varepsilon$ holds

- (d.) There exists $x \in \mathbb{R}$ and there exists a real number $\varepsilon > 0$ such that for every integer N > 0 and for every integer p > 0 the inequality $\sum_{i=1}^{p} |f_{N+i}(x)| \ge \varepsilon$ holds
- **(8.)** Which one of the following subsets of \mathbb{R} has a non-empty interior?
 - (a.) The set of all irrational number in \mathbb{R}
 - (b.) The set $\{a \in \mathbb{R} : \sin(a) = 1\}$
 - (c.) The set $\{b \in \mathbb{R} : x^2 + bx + 1 = 0 \text{ has distinct roots } \}$
 - (d.) The set of all rational numbers in \mathbb{R}
- (9.) For an integer $k \ge 0$, let P_k denote the vector space of all real polynomials in one variable of degree less than or equal to k. Define a linear transformation $T: P_2 \to P_3$ by Tf(x) = f''(x) + xf(x).

Which one of the following polynomials is not in the range of T?

- (a.) $x + x^2$
- (b.) $x^2 + x^3 + 2$
- (c.) $x + x^3 + 2$
- (d.) x + 1
- (10.) Let n > 1 be an integer. Consider the following two statements for an arbitrary $n \times n$ matrix A with complex entries.
 - I. If $A^k = I_n$ for some integer $k \ge 1$, then all the eigenvalues of A are k^{th} roots of unity.
 - II. If, for some integer $k \ge 1$, all the eigenvalues of A are k^{th} roots of unity, then $A^k = I_n$. Then
 - (a.) Both I and II are TRUE
 - (b.) I is TRUE but II is FALSE
 - (c.) I is FALSE but II is TRUE
 - (d.) Neither I nor II is TRUE

Q.11 - Q.30 carry two marks each.

- (11.) Let $M_n(\mathbb{R})$ be the real vector space of all $n \times n$ matrices with real entries, $n \geq 2$. Let $A \in M_n(\mathbb{R})$. Consider the subspace W of $M_n(\mathbb{R})$ spanned by $\{I_n,A,A^2,...\}$. Then the dimension of W over \mathbb{R} is necessarily
 - (a.) ∞
 - (b.) n^2
 - (c.) n
 - (d.) At most n

(12.) Let y be the solution of

$$(1+x)y''(x)+y'(x)-\frac{1}{1+x}y(x)=0$$
, $x \in (-1,\infty)$, $y(0)=1,y'(0)=0$.

Then

- (a.) y is bounded on $(0, \infty)$
- (b.) y is bounded on (-1,0]
- (c.) $y(x) \ge 2 \text{ on } (-1, \infty)$
- (d.) y attains its minimum at x = 0
- (13.) Consider the surface

$$S = \{(x, y, xy) \in \mathbb{R}^3 : x^2 + y^2 \le 1\}.$$

Let
$$\vec{F} = y\hat{i} + x\hat{j} + \hat{k}$$
.

If \hat{n} is the continuous unit normal field to the surface S with positive z-component, then $\iint_S \vec{F} \cdot \hat{n} dS \text{ equals}$

- (a.) $\frac{\pi}{4}$
- (b.) $\frac{\pi}{2}$
- (c.) π
- (d.) 2π
- (14.) Consider the following statements.
 - I. The group $(\mathbb{Q},+)$ has no proper subgroup of finite index.
 - II. The group $(\mathbb{C}\setminus\{0\},\cdot)$ has no proper subgroup of finite index.

Which one of the following statements is true?

- (a.) Both I and II are TRUE
- (b.) I is TRUE but II is FALSE
- (c.) II is TRUE but I is FALSE
- (d.) Neither I nor II is TRUE
- (15.) Let $f: \mathbb{N} \to \mathbb{N}$ be a bijective map such that $\sum_{n=1}^{\infty} \frac{f(n)}{n^2} < +\infty$. The number of such bijective map is
 - (a.) Exactly one
 - (b.) Zero
 - (c.) Finite but more than one
 - (d.) Infinite

(16.) Define $S = \lim_{n \to \infty} \left(1 - \frac{1}{2^2} \right) \left(1 - \frac{1}{3^2} \right) \dots \left(1 - \frac{1}{n^2} \right)$.

Then

- (a.) $S = \frac{1}{2}$
- (b.) $S = \frac{1}{4}$
- (c.) S = 1
- (d.) $S = \frac{3}{4}$
- (17.) Let $f: \mathbb{R} \to \mathbb{R}$ be an infinitely differentiable function such that for all $a, b \in \mathbb{R}$ with a < b, $\frac{f(b) f(a)}{b a} = f'\left(\frac{a + b}{2}\right).$

Then

- (a.) f must be a polynomial of degree less than or equal to 2
- (b.) f must be a polynomial of degree greater than 2
- (c.) f is not a polynomial
- (d.) f must be a linear polynomial
- (18.) Consider the function

$$f(x) = \begin{cases} 1 & \text{if } x \in (\mathbb{R} \setminus \mathbb{Q}) \cup \{0\}, \\ 1 - \frac{1}{p} & \text{if } x = \frac{n}{p}, n \in \mathbb{Z} \setminus \{0\}, \\ p \in \mathbb{N} \text{ and } \gcd(n, p) = 1 \end{cases}$$

Then

- (a.) All $x \in \mathbb{Q} \setminus \{0\}$ are strict local minima for f
- (b.) f is continuous at all $x \in \mathbb{Q}$
- (c.) f is not continuous at all $x \in \mathbb{R} \setminus \mathbb{Q}$
- (d.) f is not continuous at x = 0
- (19.) Consider the family of curves $x^2 y^2 = ky$ with parameter $k \in \mathbb{R}$. The equation of the orthogonal trajectory to this family passing through (1,1) is given by
 - (a.) $x^3 + 3xy^2 = 4$
 - (b.) $x^2 + 2xy = 3$
 - (c.) $y^2 + 2x^2y = 3$

(d.)
$$x^3 + 2xy^2 = 3$$

- (20.) Which one of the following statements is true?
 - (a.) Exactly half of the elements in any even order subgroup of S_5 must be even permutations
 - (b.) Any abelian subgroup of S_5 is trivial
 - (c.) There exists a cyclic subgroup of S_5 of order 6
 - (d.) There exists a normal subgroup of S_5 of index 7
- (21.) Let $f:[0,1] \to [0,\infty)$ be a continuous function such that $(f(t))^2 < 1 + 2 \int_0^t f(s) ds$, for all $t \in [0,1]$. Then
 - (a.) f(t) < 1 + t for all $t \in [0,1]$
 - (b.) f(t) > 1 + t for all $t \in [0,1]$
 - (c.) f(t) = 1 + t for all $t \in [0,1]$
 - (d.) $f(t) < 1 + \frac{t}{2}$ for all $t \in [0,1]$
- (22.) Let A be an $n \times n$ invertible matrix and C be an $n \times n$ nilpotent matrix. If $X = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}$ is a $2n \times 2n$ matrix (each X_{ij} being $n \times n$) that commutes with the $2n \times 2n$ matrix $B = \begin{pmatrix} A & 0 \\ 0 & C \end{pmatrix}$, then
 - (a.) X_{11} and X_{22} are necessarily zero matrices
 - (b.) X_{12} and X_{21} are necessarily zero matrices
 - (c.) X_{11} and X_{21} are necessarily zero matrices
 - (d.) X_{12} and X_{22} are necessarily zero matrices
- **(23.)** Let $D \subseteq \mathbb{R}^2$ be defined by $D = \mathbb{R}^2 \setminus \{(x,0) : x \in \mathbb{R}\}$.
 - Consider the function $f: D \to \mathbb{R}$ defined by $f(x,y) = x \sin \frac{1}{y}$.

Then

- (a.) f is a discontinuous function on D
- (b.) f is a continuous function on D and cannot be extended continuously to any point outside D
- (c.) f is a continuous function on D and can be extended continuously to $D \cup \{(0,0)\}$
- (d.) f is a continuous function on D and can be extended continuously to the whole of \mathbb{R}^2

- (24.) Which one of the following statements is true?
 - (a.) $(\mathbb{Z},+)$ is isomorphic to $(\mathbb{R},+)$
 - (b.) $(\mathbb{Z},+)$ is isomorphic to $(\mathbb{Q},+)$
 - (c.) $(\mathbb{Q}/\mathbb{Z},+)$ is isomorphic to $(\mathbb{Q}/2\mathbb{Z},+)$
 - (d.) $(\mathbb{Q}/\mathbb{Z},+)$ is isomorphic to $(\mathbb{Q},+)$
- (25.) Let y be a twice differentiable function on \mathbb{R} satisfying

$$y''(x) = 2 + e^{-|x|}, x \in \mathbb{R},$$

$$y(0) = -1, y'(0) = 0$$
.

Then,

- (a.) y = 0 has exactly one root
- (b.) y = 0 has exactly two roots
- (c.) y = 0 has more than two roots
- (d.) There exists an $x_0 \in \mathbb{R}$ such that $y(x_0) \ge y(x)$ for all $x \in \mathbb{R}$
- (26.) Let $f:[0,1] \to [0,1]$ be a non-constant continuous function such that $f \circ f = f$. Define $E_f = \{x \in [0,1]: f(x) = x\}$. Then
 - (a.) E_f is neither open nor closed
 - (b.) E_f is an interval
 - (c.) E_f is empty
 - (d.) E_f need not be an interval
- (27.) Let g be an element of S_7 such that g commutes with the element (2,6,4,3). The number of such g is
 - (a.) 6
 - (b.) 4
 - (c.) 24
 - (d.) 48
- (28.) Let G be a finite abelian group of odd order.

Consider the following two statements:

- I. The map $f: G \to G$ defined by $f(g) = g^2$ is a group isomorphism.
- II. The product $\prod_{g \in G} g = e$
- (a.) Both I and II are TRUE

- (b.) I is TRUE but II is FALSE
- (c.) II is TRUE but I is FALSE
- (d.) Neither I nor II is TRUE
- (29.) Let $n \ge 2$ be an integer. Let $A: \mathbb{C}^n \to \mathbb{C}^n$ be the linear transformation defined by $A(z_1, z_2, ..., z_n) = (z_n, z_1, z_2, ..., z_{n-1})$.

Which one of the following statements is true for every $n \ge 2$?

- (a.) A is nilpotent
- (b.) All eigenvalues of A are of modulus 1
- (c.) Every eigenvalue of A is either 0 or 1
- (d.) A is singular
- (30.) Consider the two series
 - I. $\sum_{n=1}^{\infty} \frac{1}{n^{1+(1/n)}}$ and
 - II. $\sum_{n=1}^{\infty} \frac{1}{n^{2-n^{1/n}}}$

Which one of the following holds?

- (a.) Both I and II converges
- (b.) Both I and II diverge
- (c.) I converges and II diverges
- (d.) I diverges and II converges

SECTION - B

MULTIPLE SELECT QUESTIONS (MSQ)

Q. 31 - Q. 40 carry two marks each.

- (31.) Let $f: \mathbb{R} \to \mathbb{R}$ be a function with the property that for every $y \in \mathbb{R}$, the value of the expression $\sup_{x \in \mathbb{R}} [xy f(x)]$ is finite. Define $g(y) = \sup_{x \in \mathbb{R}} [xy f(x)]$ for $y \in \mathbb{R}$. Then
 - (a.) g is even if f is even
 - (b.) f must satisfy $\lim_{|x| \to \infty} \frac{f(x)}{|x|} = +\infty$
 - (c.) g is odd if f even
 - (d.) f must satisfy $\lim_{|x| \to \infty} \frac{f(x)}{|x|} = -\infty$
- (32.) Consider the equation

$$x^{2021} + x^{2020} + ... + x - 1 = 0$$
.

Then

- (a.) All real roots is positive
- (b.) Exactly one real root is positive
- (c.) Exactly one real root is negative
- (d.) No real root is positive
- (33.) Let $D = \mathbb{R}^2 \setminus \{(0,0)\}$. Consider the two function $u,v:D \to \mathbb{R}$ defined by $u(x,y) = x^2 y^2$ and v(x,y) = xy. Consider the gradients ∇u and ∇v of the functions u and v, respectively. Then
 - (a.) ∇u and ∇v are parallel at each point (x,y) of D
 - (b.) ∇u and ∇v are perpendicular at each point (x,y) of D
 - (c.) ∇u and ∇v do not exist at some points (x,y) of D
 - (d.) ∇u and ∇v at each point (x,y) of D span \mathbb{R}^2
- (34.) Consider the two functions f(x,y) = x + y and g(x,y) = xy 16 defined on \mathbb{R}^2 . Then
 - (a.) The function f has no global extreme value subject to the condition g = 0
 - (b.) The function f attains global extreme values at (4,4) and (-4,-4) subject to the condition g=0
 - (c.) The function g has no global extreme value subject to the condition f = 0
 - (d.) The function g has a global extreme value at (0,0) subject to the condition f=0
- (35.) Let $f:(a,b)\to\mathbb{R}$ be a differentiable function on (a,b).

Which of the following statements is/are true?

- (a.) f' > 0 in (a,b) implies that f is increasing in (a,b)
- (b.) f is increasing in (a,b) implies that f' > 0 in (a,b)
- (c.) If $f'(x_0) > 0$ for some $x_0 \in (a,b)$, then there exists a $\delta > 0$ such that $f(x) > f(x_0)$ for all $x \in (x_0, x_0 + \delta)$
- (d.) If $f'(x_0) > 0$ for some $x_0 \in (a,b)$, then f is increasing in a neighborhood of x_0
- (36.) Let G be a finite group of order 28. Assume that G contains a subgroup of order 7.

Which of the following statements is/are true?

- (a.) G contains a unique subgroup of order 7
- (b.) G contains a normal subgroup of order 7
- (c.) G contains no normal subgroup of order 7
- (d.) G contains at least two subgroups of order 7

- (37.) Which of the following subsets of \mathbb{R} is/are connected?
 - (a.) The set $\{x \in \mathbb{R} : x \text{ is irrational}\}$
 - (b.) The set $\{x \in \mathbb{R} : x^3 1 \ge 0\}$
 - (c.) The set $\{x \in \mathbb{R} : x^3 + x + 1 \ge 0\}$
 - (d.) The set $\{x \in \mathbb{R} : x^3 2x + 1 \ge 0\}$
- (38.) Consider the four functions from \mathbb{R} to \mathbb{R}

$$f_1(x) = x^4 + 3x^3 + 7x + 1$$
,

$$f_2(x) = x^3 + 3x^2 + 4x$$
,

$$f_3(x) = \arctan(x)$$
 and

$$f_4(x) = \begin{cases} x & \text{if } x \notin \mathbb{Z} \\ 0 & \text{if } x \in \mathbb{Z} \end{cases}$$

Which of the following subsets of \mathbb{R} are open?

- (a.) The range of f_1
- (b.) The range of f_2
- (c.) The range of f_3
- (d.) The range of f_4
- (39.) Let V be a finite dimensional vector space and $T:V\to V$ be a linear transformation. Let $\mathcal{R}(T)$ denote the range of T and $\mathcal{N}(T)$ denote the null space $\{v\in V:Tv=0\}$ of T. If $rank(T)=rank(T^2)$, then which of the following is/are necessarily true?
 - (a.) $\mathcal{N}(T) = \mathcal{N}(T^2)$
 - (b.) $\mathcal{R}(T) = \mathcal{R}(T^2)$
 - (c.) $\mathcal{N}(T) \cap \mathcal{R}(T) = \{0\}$
 - (d.) $\mathcal{N}(T) = \{0\}$
- (40.) Let m > 1 and n > 1 be integers. Let A be an $m \times n$ matrix such that for some $m \times 1$ matrix b_1 , the equation $Ax = b_1$ has infinitely many solutions. Let b_2 denote an $m \times 1$ matrix different from b_1 . Then $Ax = b_2$ has

sacade

- (a.) Infinitely many solutions for some b_2
- (b.) A unique solution for some b_2
- (c.) No solution for some b_2
- (d.) Finitely many solutions for some b_2

SECTION - C

NUMERICAL ANSWER TYPE (NAT)

Q. 41 - Q. 50 carry one mark each.

- (41.) The number of cycles of length 4 in S_6 is_____
- **(42.)** The value of $\lim_{n\to\infty} (3^n + 5^n + 7^n)^{\frac{1}{n}}$ is_____
- **(43.)** Let $B = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1\}$ and define $u(x, y, z) = \sin((1 x^2 y^2 z^2)^2)$ for $(x, y, z) \in B$. Then the value of $\iiint_B \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right) dx dy dz$ is _____.
- (44.) Consider the subset

$$S = \{(x,y): x^2 + y^2 > 0\} \text{ of } \mathbb{R}^2.$$

Let
$$P(x,y) = \frac{y}{x^2 + y^2}$$
 and

$$Q(x,y) = -\frac{x}{x^2 + y^2}$$
 for $(x,y) \in S$.

If C denotes the unit circle traversed in the counter-clockwise direction, then the value of $\frac{1}{\pi}\int_{C} (Pdx + Qdy)$ is _____.

- (45.) Consider the set $A = \{a \in \mathbb{R} : x^2 = a(a+1)(a+2) \text{ has a real root } \}$. The number of connected components of A is _____.
- (46.) Let V be the real vector space of all continuous functions $f:[0,2] \to \mathbb{R}$ such that the restriction of f to the interval [0,1] is a polynomial of degree less than or equal to 2, the restriction of f to the interval [1,2] is a polynomial of degree less than or equal to 3 and f(0)=0. Then the dimensions of V is equal to ———.
- **(47.)** The number of group homomorphisms from the group \mathbb{Z}_4 to the group S_3 is _____.
- **(48.)** Let $y: \left(\frac{9}{10}, 3\right) \to \mathbb{R}$ be a differentiable function satisfying $(x-2y)\frac{dy}{dx} + (2x+y) = 0$, $x \in \left(\frac{9}{10}, 3\right)$, and y(1) = 1. Then y(2) equal_____.

- (49.) Let $\vec{F} = (y+1)e^y \cos(x)\hat{i} + (y+2)e^y \sin(x)\hat{j}$ be a vector field in \mathbb{R}^2 and C be a continuously differentiable path with the starting point (0,1) and the end point $\left(\frac{\pi}{2},0\right)$. Then $\int_C \vec{F} \cdot d\vec{r}$ equals _____.
- **(50.)** The value of $\frac{\pi}{2} \lim_{n \to \infty} \cos\left(\frac{\pi}{4}\right) \cos\left(\frac{\pi}{8}\right) ... \cos\left(\frac{\pi}{2^{n+1}}\right)$ is _____.

Q. 51 - Q. 60 carry two marks each.

- (51.) The number of elements of order two in the group S_4 is equal to _____.
- (52.) The least possible value of k, accurate up to two decimal places, for which the following problem

$$y''(t) + 2y'(t) + ky(t) = 0, t \in \mathbb{R}$$
,

$$y(0) = 0, y(1) = 0, y(\frac{1}{2}) = 1,$$

has a solution is _____.

- **(53.)** Consider those continuous function $f: \mathbb{R} \to \mathbb{R}$ that have the property that given any $x \in \mathbb{R}$, $f(x) \in \mathbb{Q}$ if and only if $f(x+1) \in \mathbb{R} \setminus \mathbb{Q}$. The number of such functions is _____.
- (54.) The largest positive number a such that $\int_0^5 f(x) dx + \int_0^5 f^{-1}(x) dx \ge a$ for every strictly increasing surjective continuous function $f:[0,\infty) \to [0,\infty)$ is _____.

(55.) Define the sequence

$$s_n = \begin{cases} \frac{1}{2^n} \sum_{j=0}^{n-2} 2^{2j} & \text{if } n > 0 \text{ is even} \\ \frac{1}{2^n} \sum_{j=0}^{n-1} 2^{2j} & \text{if } n > 0 \text{ is odd} \end{cases}.$$

Define $\sigma_m = \frac{1}{m} \sum_{n=1}^m \mathbf{S}_n$. The number of limit points of the sequence $\{\sigma_m\}$ is ______.

(56.) The determinant of the matrix $\begin{pmatrix} 2021 & 2020 & 2020 & 2020 \\ 2021 & 2021 & 2020 & 2020 \\ 2021 & 2021 & 2021 & 2020 \\ 2021 & 2021 & 2021 & 2021 \end{pmatrix} \text{ is } \underline{\qquad}$

- **(57.)** The value of $\lim_{n\to\infty} \int_{0}^{1} e^{x^{2}} \sin(nx) dx$ is _____.
- **(58.)** Let S be the surface defined by $\{(x,y,z) \in \mathbb{R}^3 : z = 1 x^2 y^2, z \ge 0\}$. Let $\vec{F} = -y\hat{i} + (x-1)\hat{j} + z^2\hat{k}$ and \hat{n} be the continuous unit normal field to the surface S with positive z-component. Then the value of $\frac{1}{\pi}\iint_S (\nabla \times \vec{F}) \cdot \hat{n} dS$ is______.
- **(59.)** Let $A = \begin{pmatrix} 2 & -1 & 3 \\ 2 & -1 & 3 \\ 3 & 2 & -1 \end{pmatrix}$.

Then the largest eigenvalue of A is _____.

(60.) Let $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$. Consider the linear map T_A from the real vector space $M_4(\mathbb{R})$ to itself defined by $T_A(X) = AX - XA$, for all $X \in M_4(\mathbb{R})$. The dimension of the range of T_A is ______.

AGADEMY REGENERATING LOGICS www.dipsacademy.com